
WINTER OPERATIONS CONFERENCE

OCTOBER 5-6, 2011 Fairmont Queen Elizabeth Hotel Montreal, Québec, Canada

Winter Operations Conference - Montreal October 5-6, 2011

Operational Landing Distances

Implementing TALPA ARC

Presented by
Lars KORNSTAEDT / Performance Expert, Airbus Flight Operations Support

Contents

- Introduction to FAA TALPA ARC
- 2 Runway Assessment Matrix
- 3 Performance
- (Implementation by Airbus
- 5 Conclusion

FAA TALPA ARC

Takeoff and Landing Performance Assessment
Aviation Rulemaking Committee

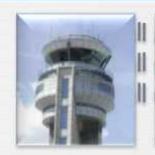
Alaska Airlines

INISTRATIC

Creation of the Group

Proposals finalized

Winter Trials



Renewed pressure from NTSB for NPRM

TALPA ARC Concepts

Common rules

Shared operational landing performance computation

- Realistic Air Distance
- Representative Friction
- All physical effects considered

Standardized performance to match reported conditions

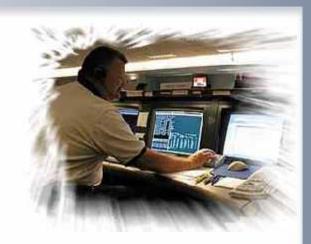
- Standardized runway condition assessment
- Allow performance determination for all types of reports

Rules for Airports

- Attempt to maintain runw
- Make observations
 - As accurately as possib
 - As frequently as require
- Report
 - Runway Codes by third:
 - Contamination from 109
 - PiReps
 - No measured friction va
- Close runway
 - One report of "Nil" cond
 - Two consecutive reports

Airport	Runway	Condition	Assessment
---------	--------	-----------	------------

	Assessment Criteria		Downgrade Assessment Criteria					
Code	Runway Condition Description	Ми (µ) ¹		Deceleration And Directional Control Observation	PIREP			
5	• Dry			8	٥			
5	Wet (Includes water 1/8" or less and Damp) Frost 1/8" or less depth of: Slush Ory Snow Wet Snow		49 or Higher	Braking decaleration is normal for the wheel braking off or applied. Directional control is normal.	Gocc			
4	-15°C and Colder outside air temperature: • Compacted Snow	38		Brake deceleration and controllability is between Good and Meclum.	Gocc to Medium			
3	Wet ('Suppery when wet'r unway) Dry Snow or Wet Snow (Any Depth) over Compacted Snow Greater than 1/8" depth of: Ony Snow Wet Snow Wet Snow Warmer than -15°C outside air temperature: Compacted Snow	to 30	29	Braking dece eration is noticeably reduced for the wheel braking effort applied. Directional control may be not ceably reduced.	Medium			
2	Greater than 1/8" depth of: • Water • Siush		В	Brake deceleration and controllability is between Medium and Poor Hotential for hydropian ng exists.	Medium to Ponr			
1	• Ice ²		21	Braking deceleration is significantly reduced for the wheel braking effort applied. Directional control may be significantly reduced.	Poor			
0	Wet Ice ² Water on top of Compacted Snow ² Dry Snow or Wet Snow over Ice ²	20 or Lower		Draking dece eration is minimal to non-existent for the wheel braking effort applied Directional control may be uncertain.	Nil			


Rules for Manufacturers

- Publish Operational Landing Distances
 - "Minimum" Compliance with new principles
 - Cover all 6 friction levels
 - Accountability for
 - Temperature effect
 - Runway slope effect
 - Approach speed increment effect
- Rule to be retroactive

Rules for Operators - Dispatch

Existing dispatch requirements

Dry runway

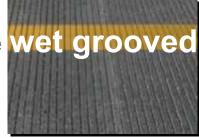
Wet

Conta

RLD dry = 1.67 ALD dry

RLD wet = 1.92 ALD dry

max of RLD wet


RLD conta = 1.15 ALD conta

Rules for Operators – in-Flight

- Systematic Landing Performance computation in approach
- Exemptions
 - Dispatch to same dry runway under same conditions

Dispatch to same wet grooved runway under same conditions

15% Safety Margin

1.15 x OLD = Factored OLD (FOLD) ≤ LDA

Except in case of in flight failures or emergencies

Rules for Operators - Use of Automation

- Automatic Landing
 - Increments to airborne distance as required

- Automatic Braking
 - **FOLD** manual ≤ LDA
 - And if

OLD a/brk ≤ LDA

then FOLD a/brk > LDA allowed

Contents

- Introduction to FAA TALPA ARC
- 2 Runway Assessment Matrix
- 3 Performance
- (Implementation by Airbus
- 5 Conclusion

Purpose of Runway Condition Reporting

Provide

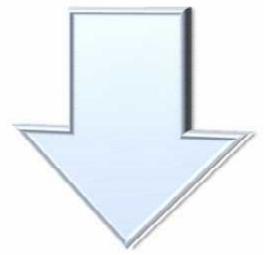
Friction Capability of the Runway

Allow

Realistic Performance Assessment

Accurate Complete
Timely Useful

INHERENT LIMITATIONS
REQUIRE
MARGINS


Contaminant Type and Depth

Advantages

- Simple Observation
 - No need for preceding aircraft
 - No need for friction tester
 - No interruption of operations
- Simple equivalence to published performance data

Disadvantages

- May be incomplete and/or misleading
 - Dry Snow / Slush over Ice
 - "Patchy"
 - Friction tends to be worse if contaminant melting
- Depth Assessment difficult (just Wet or already Flooded?)

Friction Measurement

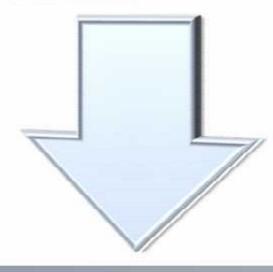
Advantages

- Precise Numbers
- No need for preceding aircraft

Disadvantages

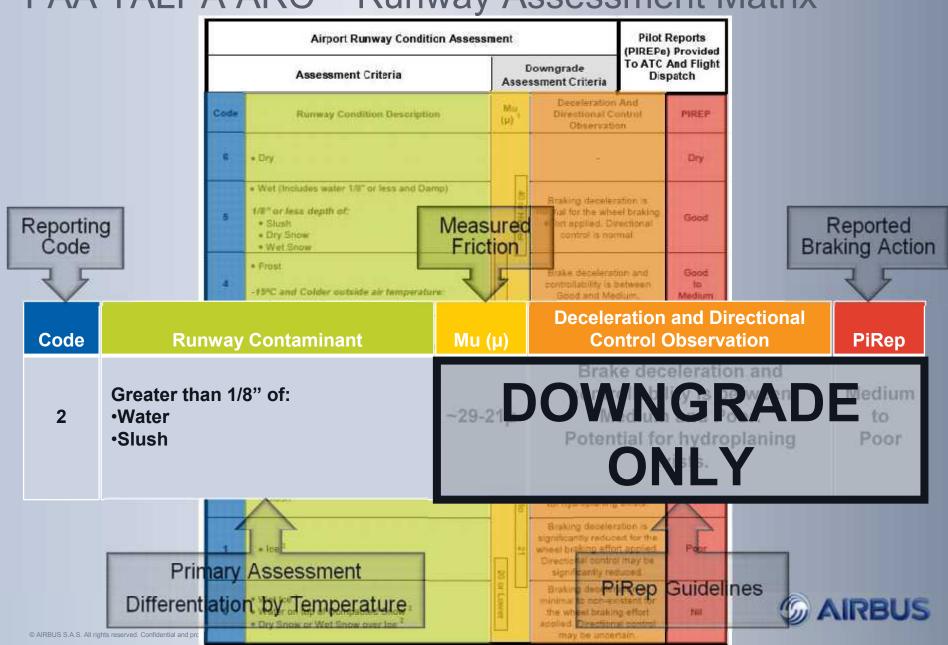
- No direct correlation with aircraft performance
- · Issues with reproducibility
- Optimistic on fluid contaminants
- Requires runway closure for measurement
- Lack in timeliness

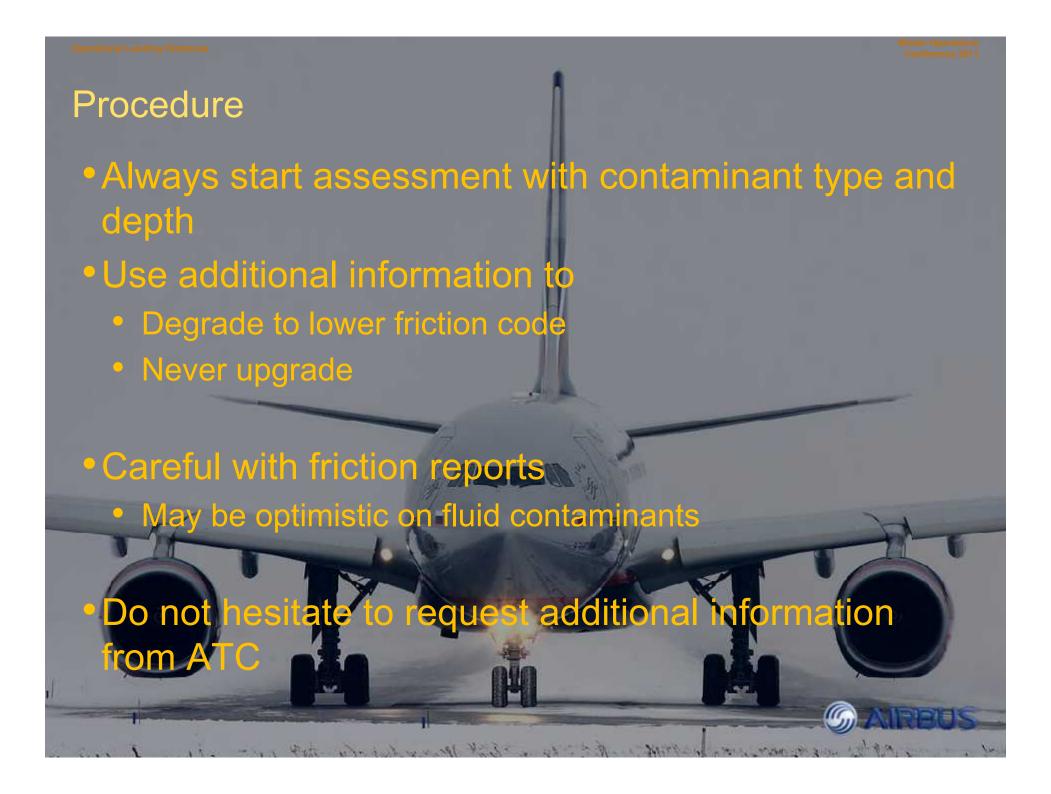
Pilot Braking Action Report



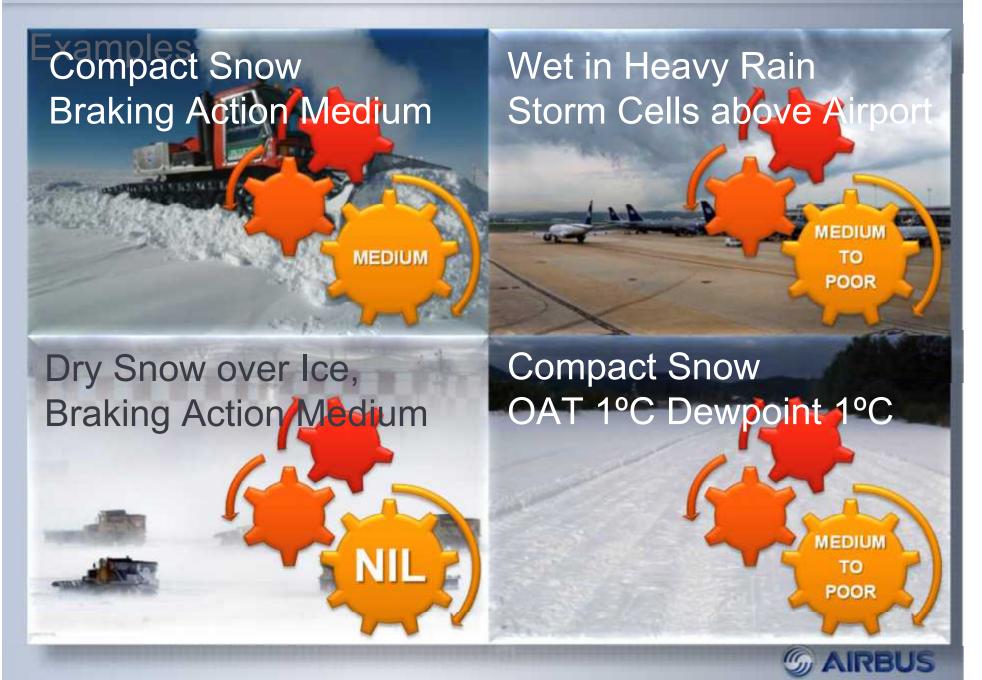
Advantages

- Usually most recent information
- · Quantifies effect of contaminant on aircraft




Disadvantages

- Subjective assessment
 - Pilot experience
 - · Aircraft characteristics
- Mix of Braking friction, aerodynamic drag and reverse thrust effects
- No correlation with published aircraft performance



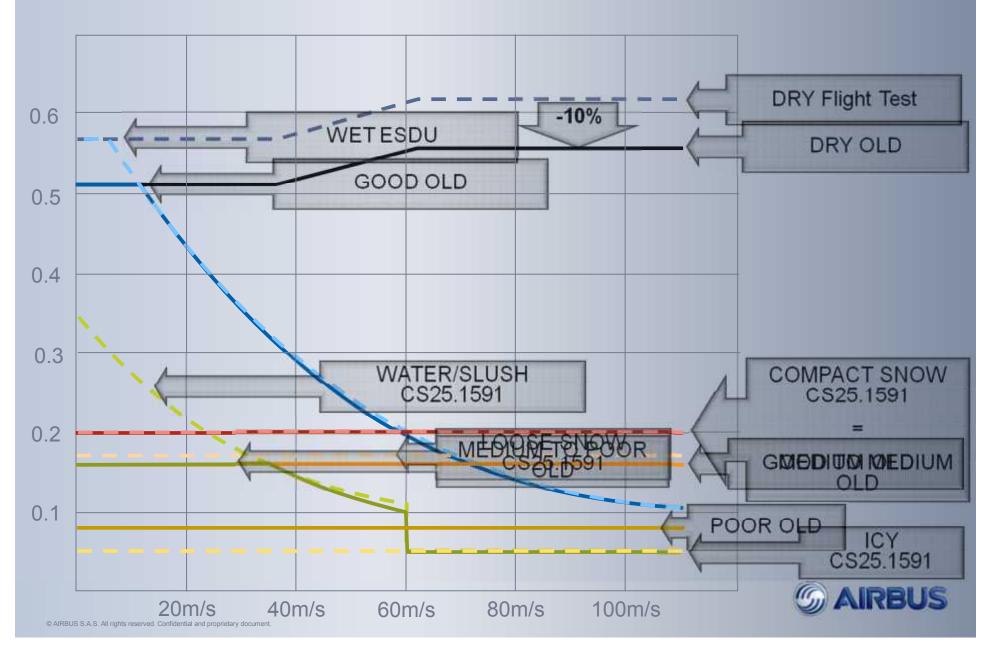
FAA TALPA ARC - Runway Assessment Matrix

Winter Operations
Conference 2011

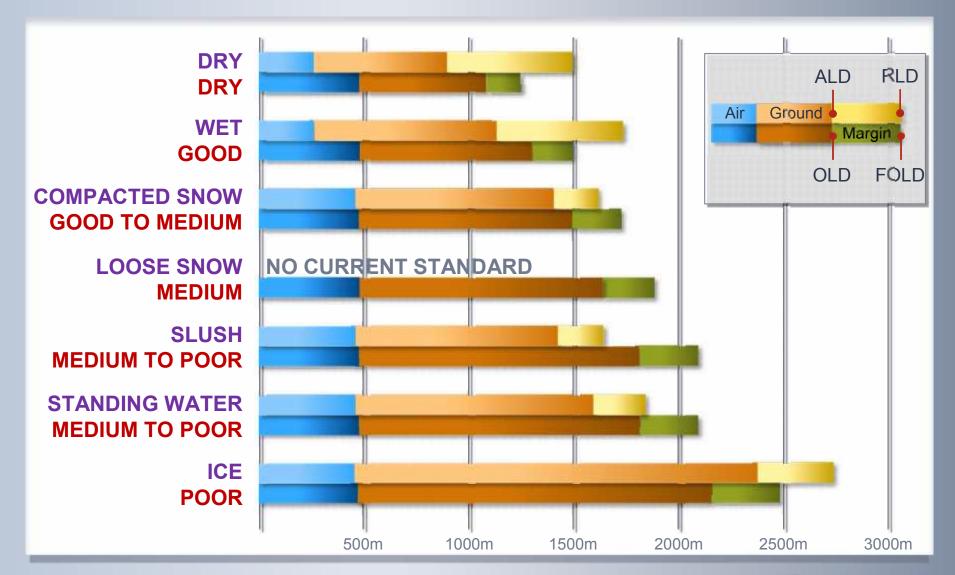
Contents

- Introduction to FAA TALPA ARC
- Runway Assessment Matrix
- 3 Performance
- 4 Implementation by Airbus
- Conclusion

Definition of Operational Landing Distance

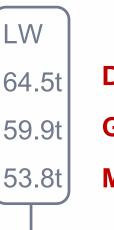

- Realistic airborne part
- 6 braking performance levels
 - Labelled by Reported Braking Action (RBA)
 - Good, Medium, Poor and intermediates
 - Matrix becomes compulsory point of entry
- All relevant parameters considered
 - Pressure altitude
 - Planned approach speed
 - Outside temperature and wind
 - Runway slope
 - Reverse thrust use

6 friction levels


Landing Distance Definitions

- ALD Actual Landing Distance
- RLD Required Landing Distance (Dispatch) = ALD x F_{DISPATCH}
- OLD Operational Landing Distance
- FOLD Factored Operational Landing Distance = OLD x 1.15

Landing Distances: Legacy vs. TALPA ARC



Page 22 BOTH BASED ON MAX BRAKING FROM TOUCHDOWN AIRBUS

A320 in Tegucigalpa / Honduras

- MHTG/TGU RWY 02
 - LDA 5410ft / 1649m
 - Flevation 3287ft
- CONF FULL / VREF+5 / no wind / OAT 20°C

Dry Wet **Standing Water**

FOLD OLD

Dry 1330m 1520m (no rev)

1600m 1830m (all rev) Good

Med to Poor 1910m 2200m (all rev)

Limited by MLW / Dispatch

Contents

- 1 Introduction to FAA TALPA ARC
- 2 Runway Assessment Matrix
- 3 Performance
- 4 Implementation by Airbus
- 5 Conclusion

Rulemaking Update

TALPA ARC

May 2009 Proposals submitted to FAA

• Q3 2011 Update to SAFO 06012

2012 /13 AC for Airports, Voluntary OPS Spec, AC91-79

2015 Publication of NPRM

Friction Task Force

2009/10 Phase 1 – Annex 14 / SNOWTAM / Circular

2011-15 Phase 2 – Global Reporting Format, Guidance

Rulemaking

Q1 2010 In Charge of Airport Operations

March 2010 Runway Friction and Aircraft Braking

Workshop

2011-14 Rulemaking Project on Contaminated

Runways

Airbus Implementation Schedule

Feb 2010

Presentation of Octopus specification to EASA

Aug 2010

Communication to Airlines

Q1 2011

Start of PEP/LPC Validation

Apr 2011

PEP/FM Approval by EASA

Q2 2011

Finalisation of Publication Method and Format

Q3 2011

Start of Production of Documentation

Q4 2011

OCTOPUS v28 Certification by EASA

Mid 2012

Publication for A318/319/320/321/330/340

Q3 2012

Publication for A306/310/380

WARNING: DUE DATES ARE CLOSER THAN THEY APPEAR

OLD Implementation by Airbus

- For all Airbus aircraft
 - At least "Minimum Compliance" with new principles
 - Cover all 6 friction levels
 - Accountability for
 - Temperature effect
 - Runway slope effect
 - Approach speed increment effect
- All Performance data sources
 - Flight Ops Engineer Software
 - Flight Manual
 - Operational Documentation
 - Electronic Flight Bag
 - Training Material

Operational Documentation - QRH

OLD - GOOD

The Reference Distance (REF DIST) is for Sea Level (SL), ISA temperature, no wind or slope, VAPP(Approach speed)=VLS, no engine reverse thrust

CONF FULL

Corrections on landing distance (m)		WEIGHT		SPD	ALT	Wind	ТЕМР	SLOPE	REV
Braking mode	REF DIST (m) for 66T	per 1T BELOW 66T	per 1T ABOVE 66T	per 5kt	per 1000ft above SL	per 5kt TW	per 10°C above ISA	per 1% down slope	Per thrust reverser operative
Max Manual	1410	-10	+ 20	+ 110	+ 70	+ 210	+70	+ 50	- 70
Autobrake Med	1460	-10	+ 20	+ 110	+ 70	+ 210	+ 70	+ 50	- 20
Autobrake Low	1960	-20	+ 30	+ 140	+ 70	+ 200	+70	+ 30	- 20

For Overweight Landing, add 120 m For Autoland, add 350 m

CONF 3

Corrections on landing distance (m)		WEIGHT		SPD	ALT	Wind	TEMP	SLOPE	REV
Braking mode	REF DIST (m) for 66T	per 1T BELOW 66T	per 1T ABOVE 66T	per 5kt	per 1000ft above SL	per 5kt TW	per 10°C above ISA	per 1% down slope	Per thrust reverser operative
Max Manual	1550	-20	+ 20	+ 120	+ 80	+ 220	+70	+ 60	- 80
Autobrake Med	1600	-20	+ 20	+ 120	+ 80	+ 220	+ 70	+ 60	- 40
Autobrake Low	2100	-20	+ 30	+ 150	+ 80	+ 210	+ 80	+ 30	- 20

For Overweight Landing, add 120 m For Autoland, add 350 m

EFB Landing Application

EFB Landing Application

EFB Landing Application

Conclusion

- Airbus adopts TALPA ARC standard for in-flight landing performance
- Realistic computation basis for all winter runway conditions
- In current environment, pilot must compensate for non yet compliant Runway Condition Reporting
- Major safety improvement requires

SHARED GLOBAL ASSESSMENT & REPORTING STANDARDS

Operational Landing Distances

Winter Operations
Conference 2011

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied. The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.

AIRBUS, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380, A400M are registered trademarks.